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Abstract

This literature review summarizes information on Mg isotopes as a paleoenvironmental tool,

together with applied methodologies, advanced analytics, as well as current state of research.

Furthermore, the focus and the sample materials of the main research are described. The

priorities are to generate a Phanerozoic Mg isotope record based on the analyses of Brachiopod

shells. This will make it possible to draw conclusions on the oceanic Mg cycle, hydrothermal

luxes, and dolomitization events in oder to contribute valuable knowledge to research in this

ield.

1. Introduction

Magnesium is an alkaline earth element that is

lithophile, mobile, soluble, and occurs as con-

servative ion in water, i.e. its concentration

varies only in proportion to salinity [1]. The

global (bio-)geochemical cycles of Mg and Ca

are closely linked together and contribute signif-

icantly to the consumption of atmospheric CO2.

Climate change is coupled with the oceanic

Mg/Ca ratio, e.g. cooling over the Cenozoic

was accompanied by an enrichment of Mg over

Ca [2]. Mg isotopic ratios in the ocean, which in

turn vary by the underlying processes of the rel-

ative Mg excess, such as continental weathering

and carbonate precipitation, represent an ideal

tracer for the relative contribution from sources

of input luxes. However, the linkage of climate

and seawater chemistry is not well understood,

even though it has been clearly proven. The in-

terest is therefore intense to gain further knowl-

edge.

The Mg isotope system is among the uncon-

ventional ones and investigations on Mg isotope

variability are made possible recently only with

the advent of Multicollector Inductively Cou-

pled Plasma Mass Spectrometry (MC-ICP-MS).

Early investigations on Mg isotope variations

using Thermal Ionisation Mass Spectrometry

(TIMS) were limited to � to �‰ uncertainty.

Galy et al. [3, 4] applied new techniques and

demonstrated an improvement about one or-

der of magnitude for the discrimination of Mg

isotope ratios. Recently, the long-term repro-

ducibility, based on 4-year analyses of olivine

and seawater samples, of ≤0.0� and ≤0.0�‰ for

� Mg and � Mg (��) was achieved [5]. Thus,

the approximate overall natural � Mg range of

�‰ in terrestrial materials [2, 6, 7] (see ig. 1)

varies outside current uncertainty.

Figure 1: Natural variation of � �Mg values of im-

portant geological reservoirs after [8].
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For the current research, Mg isotope ratios

from calcitic shells of Brachiopods will be stud-

ied. Brachiopod shells are biomineralised cal-

citic skeletons synthesised by long-lived, long

ranging, extant marine organisms [9]. The pre-

vailing (physico-)chemical information of the

adjacent marine environment is built into the

valves and can be preserved [10]. Brachiopods

can precipitate low-Mg calcite (LMC)1 shell lay-

ers [9], that are relatively diagenetically stable

and retain their primary marine isotopic sig-

nal. Thus, shells could be used to study ele-

mental or isotopic ratios in the ocean for the

time they were built. For example, the utili-

sation of Mg as a proxy for marine tempera-

tures as mentioned above, i.e. as a paleother-

mometer or palaeoseasonality proxy in the car-

bonate skeleton shells of brachiopods have been

reported in the light of the ratio of Mg/Ca by

measuring intra-shell variations by LA-ICP-MS

[9]. Moreover, Brachiopod shells can be a use-

ful proxy for Mg isotope composition of seawa-

ter, which relects e.g. continental weathering,

dolomitization and hydrothermal activity [11]

cf. section 2.2. However, vital efects and ana-

lytical uncertainties will limit the use as e.g. pa-

leothermometer. In order to gain more knowl-

edge, the tools being used include modern and

fossil calcitic shells from Brachiopods, as well as

brood experiments for proxy calibration. The

acquired � Mg data from both modern and fos-

sil samples, and the generated marine � Mg

trends (i.e., time-series), will be used to model

the oceanic Mg cycle during the Phanerozoic.

2. Theory

2.1. Biogeochemical cycle of Mg

The biogeochemical cycling of Mg is intimately

linked to the global C cycle. The generalized

Urey reaction eq. (1) represents the weathering

of both Mg and Ca silicates with the associated

simultaneous consumption of atmospheric CO2.

CO + CaSiO −−−→ CaCO + SiO (1)

Equation (1) can be extended with Mg being

involved, that can be coprecipitated with Cal-

cium (Ca) to form dolomite (eq. (2)).

CO +(Ca,Mg)SiO −−−→ (Ca,Mg)CO +SiO (2)

The weathering products (Ca2+, Mg2+ and

HCO3
– ) are transported to the ocean by rivers

and precipitated on site as Ca and Mg carbon-

ates in the sediments [12]. The overall reac-

tion for marine precipitation or dissolution of

calcium carbonate is often referred to as wet

dissolution-reprecipitation reaction and can be

written as eqs. (3) and (4).

Ca(HCO ) −−−→ CaCO +H O + CO (3)

Mg(HCO ) −−−→ MgCO +H O + CO (4)

2.2. Mg isotopes

MC-ICP-MS techniques enabled to measure Mg

isotope ratios driven by chemical fractionations

with suicient precision. Magnesium isotope

ratios as a paleoenvironmental tracer are par-

ticularly well suited for surface processes, such

as continental weathering [6, 8, 13]. A short

non-exhaustive overview about relevant exam-

ples based on chemical fractionation of Mg iso-

topes follows. Huang et al. [14] reported on

the enrichment of residues during dissolution

at weathering of basalts, whereas Ryu et al.

[15] observed only little fractionation in gran-

ites. Magnesium-clays are modestly enriched

in � Mg, Mg carbonates are depleted by � to

�‰ relative to the precipitation solution [4, 6,

13, 16–18]. Further studies on carbonates such

as dolomites e.g. [7, 19, 20], (a-)biotic calcite

[8, 13, 21–24], as well as cave carbonates [4, 25,

26] have been examined. Investigations on Mg

fractionation in biogenic carbonates were car-

ried out but show a low fractionation between

carbonate mineral and solution for the LMC of

Brachiopods [11]. Magnesium isotopic studies

on pore waters of marine sediments [16], as well

as on riverine luxes into the ocean were pub-

lished. Tipper et al. [6] analysed Mg isotopes in

45 rivers covering �0% of the global Mg riverine

1< � % MgCO3
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lux to the ocean (see ig. 2) and found a range

of riverine � Mg of �.�‰, half the varation in

terrestrial rock.

Figure 2: Schematic overview on the main Mg cy-

cle, with estimates of luxes in � � ��−
after [6]

The global runof � Mg has been estimated

at −�.09‰ distinct from seawtater at −0.��‰
relative to DSM-3 (see section 2.3). This im-

plies that the the ocean is either not in steady

state with respect to Mg isotope ratios, or Mg

isotope ratios must be fractionated [6]. How-

ever, the variation of Mg isotopic rations can

relect the relative contributions of changes in

silicate or carbonate input to the global Mg bud-

get. Tipper et al. [6] postulated that the difer-

ence of global runof and seawater is consistent

with fractionation by carbonate precipitation.

2.3. Reference materials

In order to correct the Mg instrumental mass

bias, reference materials are required. The

initially widespread NIST-SRM 980, a puri-

ied Mg metal standard, was proven to be het-

erogeneous. Today, Mg isotope data is usu-

ally reported relative to DSM-3 by Galy et al.

[27]. This reference material consists of �0 g
Mg metal extracted from the Dead Sea. It

is already in solution, and therefore immune

to heterogeneity [27]. The � �� � � data

can be approximately converted using � �� =
� �� � � + �.�0� [28]. Although DSM-3 has

been frequently applied, it is not a standard

certiied or issued by a reference material insti-

tute [29] and generally, there is still no inter-

laboratory consensus on one suitable Mg refer-

ence material. Teng and Yang [30] published

Mg isotope compositions for 24 reference ma-

terials, the long-term reproducibility for � Mg

was 0.0�‰ and for � Mg 0.0�‰.

3. Methodology

3.1. Notation

With Mg, Mg, and Mg the Mg isotope sys-

tem has three stable isotopes with relative abun-

dances of ��.0�%, �0.00%, and ��.99% [1]. Mg

isotopic studies are reported using the standard

per mil (‰) notation relative to those of the ref-

erence standard.

� , Mg = � ( , Mg/ Mg)sample

( , Mg/ Mg)
standard

−��×�0 (5)

Initially the � notation was applied for the de-

cay of � Al to radiogenic � Mg but to be

consistent with other stable isotope systems it

was adapted to mass fractionation efects. The

� Mg is reserved for mass independent fraction-

ation analogous to, e.g. Δ33S, and � Mg∗ to

radiogenic variations in � Mg.

3.2. Analytical considerations

Magnesium isotope studies based on mass frac-

tionation were only made possible by the ad-

vancement in mass spectrometry, i.e. the advent

of MC-ICP-MS. The Faradey cup collectors of

MC-ICP-MS are used to simultaneously mea-

sure all three Mg isotopes, thus instrumental

bias can be monitored precisely. For the Mg

isotope system the standard-sample bracketing

method [3] is used to correct the internal mass

bias. Magnesium isotope ratios can be, in con-

trast to earlier studies, resolved more precise

about an order in magnitude.

However, proxy analyses on skeletal carbon-

ates can be problematic because 1) proxies re-
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spond to more than one environmental parame-

ter and 2) due to vital efects during biominer-

alisation [21]. Furthermore, it needs to be taken

into account that shell structures of diferent

brachiopod species vary and the primary layers

of the shells need to be extracted exclusively

prior to separation, in order to produce satis-

factory analytes. These aspects will be carefully

considered during this project.

3.3. Mg chromatographic separation

The validity of isotope ratio values measured

by MC-ICP-MS largely depends on the quality

Mg puriication, i.e. the separation of matrices.

Puriication is accomplished by eluting samples

through columns with cation resins, commonly

Bio-Rad AG® 50W-X12 [31–34] and Bio-Rad

AG® A550W-X8 [35–37]. In the case of calcitic

shells Na, Sr, Fe and especially Ca, which in dou-

bly charged state interferes with � Mg, can dis-

turb Mg isotope mass signals. Most Mg purii-

cation methods are based on chromatographic

column separation through volumetric elution

in various samples [21, 28, 34, 36, 38–42]. Re-

ports on methods using a single step strategy [6,

13, 21, 26, 37, 43, 44], as well as two-stepped

approaches, e.g. [8, 34, 42, 45] exist. However,

there is no standard procedure and the calibra-

tion of columns should be considered.

4. Summary (research aims)

The current research will address the following

aspects:

• Improve the eiciency of already estab-

lished Mg puriication protocols.

• Generate Mg isotope data from mod-

ern and selected Phanerozoic fossil Bra-

chiopods.

• Test selected samples of laboratory-grown

specimens (proxy calibration).

• Model the oceanic Mg cycle over geologic

timescales.

• Draw implications on changing rates of

hydrothermal activity vs. dolomite forma-

tion.

• Investigations on the coupled approach

� Mg and � Li to shed light on the pos-

sible role of marine clay formation (i.e.

reverse weathering and on the long-term

evolution of marine Mg/Ca ratios).
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