
The macro-structure of modern and fossil brachiopod archives 

Abstract 
Brachiopods, are not the dominant element in modern oceans, but were very 

common in the past. Over 12,000 species and 5,000 genera fossils have found and 

recognized. As high variation and longtime distribution in the Paleozoic ocean, 

brachiopods are very important tools for paleontology research. Moreover, owing to 

the unique features of shells, which may very hard withstanding post-depositional 

alteration, and be considered the very credible indicators of climate changes in the 

ancient oceans. 

Shells of brachiopods 
Brachiopods have two hard "valves" (or shells: ventral valve and dorsal valve) on the 

upper and lower surfaces, also be called “lamp shells” due to the curved shells of the 

class Terebratulida look rather like pottery oil-lamps. Based on the hinged tooth and 

socket arrangement between two valves, there are two major groups of brachiopods 

are recognized, articulate and inarticulate.  

From outside to inside, articulate brachiopod shells are generally composed of 

following representative shell layers: 1)a thin organic periostracum (rarely preserved 

in fossils); 2)a thin outer primary layer(rare except in extremely well-preserved fossil 

shells); 3)a thicker inner secondary layer(always present in fossils); 4)a tertiary 

layer(always absent except in specific order). (e.g., Armstrong, 1968; Williams, 1968, 

1997; Grossman et al., 1993; Azmy et al., 1998, 2006) Different kinds of brachiopods 

will have very different fabrics and structure of the layers, especially in the secondary 

layer. (Williams, 1997) Detailed different kinds secondary layer have described in 

(Williams, 1997): 1) organophosphatic lamination; 2) calcitic fabrics; 3) calcitic fibers; 

4) calcitic tabular lamination; 5) calcitic cross-bladed lamination. Moreover, the 

secondary layer is the most important biomineralization layer for classification and 

chemistry analyses. 

By the way, the columnar epithelial cell, which initially secreted the periostracum, is 

responsible for the deposition of the calcareous shell of two layers (outer primary 

and inner secondary) (Williams, 1956)  

For a new three-part scheme from 1990s, the Linguliformea have shells of calcium 

phosphate while the Craniiformea and Rhynchonelliformea have calcite shells. 

Craniiformean brachiopods have high Mg-calcite semi-nacre shells, and 

Rhynchonelliform brachiopods have shells comprising low Mg-calcite fibres (e.g. 

Williams, 1970; England et al., 2007; Pérez-Huerta et al., 2008) 

 

Chemistry proxy for paleo-environment 
There are several common proxies for paleo-environment, such as: brachiopods, 

conodonts, and whole rocks (Brand et al., 2011). Some comparison between 

different type’s materials for isotopic examination have carried out. (Qing et al., 1998; 

Wenzel et al., 2000; Brand, 2004). However, of all commonly occurring Paleozoic 



sedimentary carbonates, the fossil record of brachiopod have the highest probability 

of having retained their original isotopic composition. (Grossman et al., 1993; Banner 

and kaufman, 1994; Mii and Grossman, 1994; Mii et al., 2001; Brand et al., 2003)  

According to previous studies(Popp B B, et al., 1986; Grossman et al., 1991; Bates 

and Brand, 1991; Banner and Kaufman., 1994; Azmy et al., 1998; Brand et al., 2003, 

2007; Griesshaber et al., 2004; Parkinson et al., 2005; Angiolini et al., 2007; Brand et 

al., 2011;), the brachiopods are the best choice for “ideal” carbonate reference 

standard as following characteristic:  

1) Very common for fossils record even index fossils; (first appearance from 

Cambrian, also have the modern representatives for investigating)  

2) lived in normal environment;  

3) Isotopic equilibrium with ambient environment; (primary layers depleted in δ18O 

and δ 13C, (Korte et al., 2005) Secondary layers equilibrium (Grossman et al., 1991; 

Parkinson et al., 2005)) 

4) Brachiopods shells are low-Mg calcite; (for example: Articulated brachiopods 

Rhynchonelliform) 

5) Textures are well known and crystallites are available;  

6) Brachiopods are large enough for analyses. (thick shells are especially resistant to 

diagenesis. (Grossman et al., 2008)) 

In order to make sure that the brachiopods are good archive of geochemistry 

research, many scholar have been starting lab work for comparisons. Some studies 

have raised interesting and debatable views, such as: Differentiation between data 

from different samples styles(Brand et al., 2012), species(Grossman et al., 1991), 

ventral and dorsal valves(Curry and Fallick., 2002) or even within the secondary 

layer of the shell(Griesshaber et al., 2004) are obviously.  

Corresponding, different views as flowing: Parkinson et al. (2005) found no 

significant difference in δ 18O compositions between ventral and dorsal valves. Small 

δ 18O and δ 13C variations for different brachiopod orders. (Azmy et al., 1998) 

Interspecies and interspecies isotope effects are not important factors for isotope 

variations. (Azmy et al., 1998) 

Nevertheless, the important role of brachiopod shells for geochemistry indicators is 

unshakable. Therefore, we have to using the brachiopod shells proxy to paleo-

environment reconstruction more cautiously. 

 

Screening methods and Diagenesis evaluation 
For the purpose of obtain better data, the sample for examination should meet 

following requirements (e.g., Brand et al., 2011): 1) passed the most screening tests, 

2) stratigraphically well constrained, 3) reflecting ambient oceanographic 

environment. In addition, we prefer the impunctate shells to examine in order to 



avoid any post-depositional contamination by secondary calcite filling punctae. 

(Azmy et al., 1998; Cusack et al., 2012) 

Despite their resistance to diagenesis, brachiopod shells can be subject to oxygen 

and carbon exchange. δ 18O and δ 13C shifts can be caused by diagenesis 

dramatically. (Grossman et al., 1991; Mii et al., 1997) And we must therefore be 

carefully scrutinized for preservation of original microtexture and chemistry.  

Following the work of Williams, it became obvious that SEM is an appropriate tool to 

study brachiopod biomineralisation processes. (Gaspard et al. 2007) And 

traditionally, microstructure preservation, cathodoluminescence and trace-element 

characterization are the main tools (criterion) for shell-preservation evaluation. (e.g., 

Popp et al., 1986; Grossman et al., 1991, 1993, 1996, 2008; Mii and Grossman, 

1994; Banner and Kaufman. 1994; Angiolini et al., 2007, 2009; Gaspard et al., 2007) 

There are some indexes (references/indicators) for sample evaluation:  

1) Clear and well-oriented microstructure is the first evidence of shell preservation. 

(Grossman et al., 1991) 

2) Nonluminescent (NL) calcite are preferred (Grossman et al.,1993; Banner and 

Kaufman, 1994) Isotopic values of NL shells are equal to (unanimous) for the same 

stratigraphic interval. (Mii et al., 1997) 

3) Prismatic tertiary layer shell is the material most resistant to diagenesis, and 

probably the best biogenic material for developing a detailed isotope stratigraphy for 

the Paleozoic. (Grossman et al., 1996; Griesshaber et al., 2004; Garbelli et al., 2012) 

4) Shell fabric and its relative organic matter content influencing factor in 

geochemical data (Garbelli et al., 2014) 

5) Shells growth rates will affect δ13C compositions (Garbelli et al. 2014) 

6) Shell size also is important. Large specimens tend to be better preserved than 

smaller ones (Grossman et al., 1993) 

With the improvement of technology and depth research, more and more advanced 

means have applied in screening methods and diagenesis evaluation. 

Electron backscatter diffraction (EBSD) analyses (Schmahl et al., 2004; Griesshaber 

et al., 2007; Cusack et al., 2008a; England et al., 2007; Cusack et al., 2008b; Pérez-

Huerta and Cusack, 2008; Goetz et al., 2011; Griesshaber et al., 2012) 

laser-ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS) 

(Griesshaber et al., 2007) 

Vickers microhardness indentation (VMHI). (Griesshaber et al., 2007) 

Atomic force microscopy (AFM) (Cusack et al., 2008a; Pérez-Huerta et al., 2013) 

Synchrotron-radiation X-ray tomographic microscopy (SRXTM) (Pérez-Huerta A et 

al., 2009) 

Backscattered electron z-contrast (BSE-Z) (Zabini et al., 2012) 



energy dispersive X-ray spectroscopic (EDS) (Zabini et al., 2012) 

Polarizing microscope (Garbelli et al., 2015) 

Additionally, based on the fabric of the layer and the morphology of their 

microstructural units, brachiopods shells microstructures can be classified into 

different micromorphological types. (Samtleben et al., 2001. 9 types) (Garbelli et al., 

2012. 8 types) (Garbelli et al., 2015. 7 types)  

 

Application 
In recent years, the examination of shells microstructure became more and more 

important on brachiopod research. Types of shell structure can help for classification 

and an important factor in establishing evolutionary kinship. (e.g., four types in late 

Ordovician-early Silurian. (Dewing, 2004)) Shell microstructure help to understand 

the biomineralization under biological control (Cusack et al. 2008b) Texture of 

brachiopods shells and the process of brachiopod shell formation are more clarify 

with EBSD application. (Goetz et al., 2009; Griesshaber et al., 2009), AFM methods 

also can reveal the nanostructure of biomineral structures, which SEM images 

cannot demonstrate. (Pérez-Huerta A et al., 2013)  

To sum up, after careful assessments for the brachiopod sample, it is therefore 

suitable as proxy of original chemistry of paleo-ocean. And their shells has widely 

been used for paleo-environment and paleo-climate reconstruction. 

For example: 

Isotopic data from brachiopod shells were able to unravel the seawater 

geochemistry, temperature change, and geologic event during the prehistoric time. 

(e.g., Bates and Brand, 1991; Grossman et al., 1991, 1993, 2008; Banner and 

Kaufman, 1994; Azmy et al., 1998; Korte et al., 2005; Brand et al., 2012; Nielsen et 

al., 2013; Roark et al., 2015; Veizer and Prokoph, 2015; Garbelli et al., 2015) 

reflecting regional differences in salinity, circulation, and productivity.(Grossman et 

al., 1993) 

For smaller time scales, δ 18O can reflect paleo-seasonality change. (Mii and 

Grossman, 1994); δ 13C and δ 18O data can also reflect E1 Nifio events (Buening and 

Spero, 1996). Furthermore, just one single shell, can also reveal the information 

about ancient seasonal climate. (Angiolini et al., 2012) 

 

Problem and Purpose 
In addition to the evolution of taxonomy, the musculature, microstructure and the 

composition of brachiopod shells may also change a lot. (e.g. baculation in fabric, 

Cusack et al., 1999). Up to date, our knowledge of how biomineral structures are 

related to material properties is still limited. (Pérez-Huerta et al., 2007)  



Apart from this, it is still controversial whether the data from brachiopod fossil 

represent the original ocean information. Some people believe that, before Cenozoic, 

isotopic analyses of older samples are more problematic. (Wenzel et al., 2000) 

The interpretation of the isotopic signals of the shells in paleo-climatic research relies 

heavily on knowledge of biological fractionation between the shells and ambient sea 

water and of effects of diagenetic overprint processes. (Brand et al., 2003; Schmahl 

et al., 2004) Palaeozoic shells suffered further recrystallization. (Cusack and 

Williams, 2001) And the Ᵹ18O should normalized for paleo-depth, (Bates and Brand, 

1991) paleo-temperature calculate may adjustment for shell MgCO3 contents. (Brand 

et al., 2013). As the result of comparison of trends of the seawater δ 18O and shell-

MgCO3, the new equation were proposed: T℃＝16.192-3.468(C-ꝽSW-MgC) (Brand et 

al., 2013) 

In summary, based on the outstanding characteristic of their shells, brachiopod 

maybe the best choice for “ideal” proxy reference in research. Thus, for ensure the 

representativeness of the brachiopod sample and for a better understanding of the 

relationship between shell fabric and climate change, and it is of immense 

importance to examine micro/nano-structure more meticulous. Furthermore, test 

their veracity in withstanding post-depositional alteration with new methods. The aim 

of this study will be to uncover following questions: 

1) Examine the macro-and chemico-structure of brachiopod shells, reconstruct 

evolutionary changes and fabric differentiation of the main brachiopod classes during 

the Phanerozoic (e.g., two brachiopod classes dominated the late Paleozoic seas; 

the Rhynchonellata and the Strophomenata) 

2) With new methods come from modern biology, engineering and materials science, 

appraise their reliability and validity within the influence of diagenesis.  
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